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An approximate solution of the problem of the stress-strain state of an anisotropic strip reinforced with two-dimensional ribs 
is constructed using the method of asymptotic expansion of generalized functions, the averaging method and the method of singular 
expansions. 0 2001 Elsevier Science Ltd. All rights reserved. 

One of the simplest theoretical versions of this problem is as follows: the ribs operate only under tension- 
compression and the panel (the matrix) operates under shear [l, 21. This model, while it enables one 
to cover many characteristic features of the phenomenon, is nevertheless too rough from the point of 
view of the mechanics of a deformed solid. For extremely anisotropic media, the method based on the 
expansion with respect to geometrical-stiffness parameters [3-51 is extremely effective, but its accuracy 
is limited in the isotropic case. Methods of the theory of functions of a complex variable [6] lead to the 
need to solve infinite systems of coupled linear algebraic equations, where, as a rule, closed solutions 
can only be obtained for one stringer [7]. Exact solutions of the periodic problem in double trigonometric 
series are only possible for certain special boundary conditions [8, 91. The averaging method [lo, 111 
enables an extremely simple algebraic solution to be obtained for one-dimensional ribs, but its extension 
to the two-dimensional case [12] is very artificial. 

Below we use the averaging method with a previously proposed modification [13] to obtain an 
analytical solution, while, to take into account the width of the rib, an asymptotic method is used based 
on expansions employing generalized functions [14, 151. 

1. FORMULATION OF THE PROBLEM 

Consider the stress-strain state of a strip, reinforced with two-dimensional ribs. The bending stiffness 
of the ribs is ignored, which is justified by the smallness of this quantity compared with the tension- 
compression stiffnesses. When there are no mass forces the initial equations for the anisotropic material 
of the panel (the matrix), the principal directions of anisotropy of which coincide with the Cartesian 
coordinate axes, can be written in the form [4] 

ai, 
B22 2 + B33 ax 

c+(B3, + B,?)- 
a? 

a2u =o 

axay (1.1) 

@o(y)= i [H(y+kb-E)+H(y-kb+&)] 
k=-m 

Hese H(. . . ) is the Heaviside function, Bii (i = 1, 2,j = 1, 2) are stiffness parameters, characterizing 
the panel (the matrix), B. is the tension-compression stiffness of the ribs, u and v are the displacements 
in the direction of the x and y axes respectively and 6 is the distance between the centre lines of 
neighbouring ribs. 

We will take the boundary conditions in the form 
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x = 0, H : u = 0, [B,, + Bo’po(y)]$ = P(y)Oo(y) (1.2) 

Here H is the width of the strip and PC,) is the specified boundary load. 
From the physical point of view, these boundary conditions correspond to the transfer of the load 

to the ribs for a strip reinforced against displacements in the direction of the y axis. Note that, in the 
scheme assumed, there are no singularities of the solution at the points of contact of the ribs and the 
casing [7]. 

2. THE CHANGE TO ONE-DIMENSIONAL RIBS 

We will assume initially that the width of the ribs is 2~. Assuming that the ribs are thin and taking E as 
the small parameter, we expand the function m,,(y) in series in E [14, 151. Applying a bilateral Laplace 
transformation, expanding the transform in series in E and carrying out an inverse transformation (which 
is justified within the framework of the theory of generalized functions [14, 15]), we obtain 

Q,,(y) = 2&Q(Y) + 2E c &P)(y), @(y) = 2 6(y - kb) 
n=l,3,5,... &=a 

Here 6(x) is the Dirac delta function. 
We now represent the solution of initial boundary-value problem (l.l), (1.2) in the form 

U=Ua+&U,+&*U*+..., u =Ua+EU,+ES*+... 

and change to the recurrent sequence of boundary-value problems 

(2.1) 

(2.2) 

n-1 a*u_ 
W,,sn)=-B,.C ---4cn-i)(y), b(Un,Un) = 0 

i=o ax* 
x=O,H: u;= o,... i=o, 1,2,... 

Wo) = LB, I + W(Y)I &f!TL = P(y)@(y) a_ 

r 

~(u,)=~[-B,~+POl~‘(y) 
1 

,,u,,=-;,;; ~Q’“-“(y)+P(y)~‘“‘(y); B, = 2&B. 

(2.3) 

3. AVERAGED RELATIONS 

We will use the two-scale method [13, 16, 171. We will first introduce some estimates. We will assume 
that the strip is fairly wide (H % 2b), and an external load which varies smoothly from rib to rib. 
We will use as the small parameter E, the ratio &1 = b/H. The ribs are assumed to be fairly stiff 
&b/L& - ~1 -l. In other words, the reduced stiffness of a rib considerably exceeds the tension-compression 
stiffness of the strip. 
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In dimensionless variables 5 = x/P, rl = y/H the first two equations of system (2.2) can be rewritten 
in the form 

a*u, +B 
4,~uo.~owl,agz 

a*‘+ 
33 aq2 

2% () -+(B33 + B,*)-= am 

42h_,.Vo)= B22 

a2vo aso 
-+43- 
at2 aq* 

a*uo _() -- 
+(B33+B12)ath 

(3.1) 

In accordance with the two-scale method we introduce a “fast” variable q, = y/b, retaining the notation 
n for the “slow” variable. Then 

(3.2) 

(3.3) 

(3.4) 

We will seek a solution in the form 

~o~~~o~+&~~~‘~+~~~~2~+..., vo=v(o)+&~V(‘)+E~V12)+... 

Here 

u(O) z u(O){!& n), v(O) = v’O’({, IJ) 

Ji) I ~“‘(5, n, q, ), vu) I v”‘({, n, rj,), i = 1, 2,. . . 

u’(5. tl. rl, + 1) = u”‘(5, n1, I, )* v”‘(5,tl,tl, +l)=u”‘(5J&rl,> 

Using relations (3.1)-(3.4), after splitting with respect to E, we obtain 

a*ull) 
A,, (u(O), v(O) 

& (1) 

x= 1, -= a: -_L12(u(o),v(o) ) 

Equations (3.5) can be integrated without difficulty 

J,) = _~rl~~,(u’o’.v’o’ ) + c, (59 m, + c2 (59 tl) 

,)(l) = -~rl~~2(u’o’,v’o’ )+ C3(57 ml, + G(5r 11) 

The third and fourth conditions of (3.1) can be rewritten in the form 

(3.5) 

(3.6) 

(3.7) 

The constants C, and C2 are not determined from conditions (3.7) (they must be related to the following 
averaged approximation [13]). From the first condition of (3.7) we obtain the equatibn 
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L (#P), u(O)) = 0 

and also the quantities 

c, = 0, c, = L,i(U@‘. Y(O)) 

By satisfying the second condition of (3.7) we obtain the averaged equation 

(3.8) 

’ (0) 

~,(uIo),“~“))+B,~=o 

Equations (3.8) and (3.9) form the required averaged system of equations. 
The first “fast” correction can be written in the form 

(3.9) 

(3.10) 

We will now analyse boundary conditions (2.3). Form the first boundary condition of (2.3) we obtain 

5 = 0, 1: u(O) = 0 (3.11) 

Averaging the second of relations (2.3), we have 

{=O.I (B,,+B,)au”‘/ag=P;(tl), qq)=eH/b (3.12) 

Equations (3.9) and (3.10), with boundary conditions (3.11) and (3.12), give the required averaged 
boundary-value problem. 

4. THE BOUNDARY LAYER 

The second boundary condition of (2.3) is therefore satisfied on average. The discrepancies in satisfying 
the boundary conditions in this case are obtained to be self-balancing in the sections k - 1 c n < k 
(k = 0, 21, ,..), Consequently, the stress-strain state corresponding to these fictitious loads will be 
concentrated in the region of the strip edges and will attenuate with respect to 5 at distances of the 
order of pi. In other words, we are dealing with a stressed state of the boundary-layer type, which we 
will now analyse. 

We introduce a new “fast” variable 51 = &it retaining the notation 5 for the “slow” variable. 
Then 

a a -I a - 
~=~+“’ ac, (4.1) 

We will seek a solution of the boundary-layer type in the form 

U, =&,U;e)+&;Ui*)+ . ..) U” =&,Q)+&~~*)+... (4.2) 

The functions on the right-hand sides of (4.2) depend on the variables 5, &, n, ql. 
Substituting expression (4.1) and expansions (4.2) into the initial relations, we obtain, after splitting 

with respect to Q, in the first approximation 

L~:,(u~“),Ll~o)) = 0, L;2(u~o),Y~09 = 0 

u(“)=u~o)=O when q, =k. k=O,fI ,... n 

?JLO) = 0, 
au(O) 

B1l at, n = -e,e(t~) when 5, = 0, E;’ 

(4.3) 

(4.4) 
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p) v’~‘+O as 5, +m 
“’ n 

JO) v’O’+O as 5, +- n’ n 

The operators L l 1, (‘) L\:) differ from the operators Lll and LIZ in (3.1) by the replacement of 5 and rl by 

51 and VI. 
We can solve the problem during one period (say, for k = 0, 1) and confine ourselves to boundary 

conditions (4.3)-(4.5) (the solution is then written automatically for boundary conditions (4.3), (4.4) 
and (4.6)). 

Thus, to calculate the boundary layer we arrive at the classical problem of elasticity theory of a half- 
strip, clamped on the long side, the solution of which can be obtained by different methods. 

In the case considered, when an approximate solution is constructed it is quite appropriate to confine 
ourselves to splitting with respect to the dimensionless parameter [3,4]. In this approach we solve the 
following equations in the fundamental approximation 

with boundary condition 

As a result we have 

p = F c emxk5 sin (kxx) . 
” 

k=I. 3.x... k2 
, F=-$$&: h,= 

(4.7) 

(4.9) 

Hence, the use of asymptotic methods enables us to obtain an approximate analytical solution of the 
problem in question. 

5. EXAMPLE 

As an example consider the deformation of an isotropic half-strip with the following boundary conditions 

x=0: T,=Ecosq, S=o 

0.2 0.4 0.6 

Fig. 1 
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where q = y/l, 1 is a quantity characterizing the variability of the external load, Tt is the tension- 
compression force in the direction of the x axis and S is the shear force. 

Figure 1 shows the dimensionless quantities 3 = S/E. Note that it is this force which largely depends 
on the discreteness of the arrangement of the ribs. We used the following values of the parameters: 
B, = B, v = 0.3, b/l = 0.5, h/l = l/32 and F/(lh) = 3132. Curve 1 corresponds to the constructive- 
orthotropic solution, and curves 2 and 3 correspond to ,the solutions which take into account the 
discreteness of the arrangement of the ribs when E/I = 3132 and dl = 3/16, respectively. For comparison 
we also give graphs of the change in the dimensionless shear force, calculated for the scheme of contact 
along a line (curve 4). 

It can be seen that, in the neighbourhood of the reinforcement it is necessary to take into account 
the discreteness of the arrangement of the ribs and their widths. 
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